gui.core.crossValidateMethods package

Submodules

gui.core.crossValidateMethods.cv_ARD module

class gui.core.crossValidateMethods.cv_ARD.Ui_Form(*, max_iter=None, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, compute_score=False, threshold_lambda=10000.0, fit_intercept=True, copy_X=True, verbose=False, n_iter='deprecated')[source]

Bases: Ui_Form, ARDRegression, Modules

connectWidgets()[source]

Connect the necessary widgets.

Returns:

get_widget()[source]

This function specifies the variable that holds the styling. Use this function to get the variable

Returns:

run()[source]

Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:

setHidden(bool)[source]
set_predict_request(*, return_std: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the predict method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to predict if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to predict.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

return_stdstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for return_std parameter in predict.

Returns

selfobject

The updated object.

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns

selfobject

The updated object.

setupUi(Form)[source]
toggle_params(widgets, state)[source]

gui.core.crossValidateMethods.cv_BayesianRidge module

class gui.core.crossValidateMethods.cv_BayesianRidge.Ui_Form(*, max_iter=None, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, alpha_init=None, lambda_init=None, compute_score=False, fit_intercept=True, copy_X=True, verbose=False, n_iter='deprecated')[source]

Bases: Ui_Form, BayesianRidge, Modules

connectWidgets()[source]

Connect the necessary widgets.

Returns:

get_widget()[source]

This function specifies the variable that holds the styling. Use this function to get the variable

Returns:

run()[source]

Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:

setHidden(bool)[source]
set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to fit.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in fit.

Returns

selfobject

The updated object.

set_predict_request(*, return_std: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the predict method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to predict if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to predict.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

return_stdstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for return_std parameter in predict.

Returns

selfobject

The updated object.

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns

selfobject

The updated object.

setupUi(Form)[source]
toggle_params(widgets, state)[source]

gui.core.crossValidateMethods.cv_ElasticNet module

class gui.core.crossValidateMethods.cv_ElasticNet.Ui_Form(alpha=1.0, *, l1_ratio=0.5, fit_intercept=True, precompute=False, max_iter=1000, copy_X=True, tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cyclic')[source]

Bases: Ui_Form, ElasticNet, Modules

connectWidgets()[source]

Connect the necessary widgets.

Returns:

get_widget()[source]

This function specifies the variable that holds the styling. Use this function to get the variable

Returns:

run()[source]

Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:

setHidden(bool)[source]
set_fit_request(*, check_input: bool | None | str = '$UNCHANGED$', sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to fit.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

check_inputstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for check_input parameter in fit.

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in fit.

Returns

selfobject

The updated object.

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns

selfobject

The updated object.

setupUi(Form)[source]

gui.core.crossValidateMethods.cv_GBR module

class gui.core.crossValidateMethods.cv_GBR.Ui_Form(*, loss='squared_error', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse', min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0, init=None, random_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False, validation_fraction=0.1, n_iter_no_change=None, tol=0.0001, ccp_alpha=0.0)[source]

Bases: Ui_Form, GradientBoostingRegressor, Modules

connectWidgets()[source]

Connect the necessary widgets.

Returns:

get_widget()[source]

This function specifies the variable that holds the styling. Use this function to get the variable

Returns:

run()[source]

Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:

setHidden(bool)[source]
set_fit_request(*, monitor: bool | None | str = '$UNCHANGED$', sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to fit.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

monitorstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for monitor parameter in fit.

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in fit.

Returns

selfobject

The updated object.

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns

selfobject

The updated object.

setupUi(Form)[source]

gui.core.crossValidateMethods.cv_GP module

class gui.core.crossValidateMethods.cv_GP.Ui_Form(kernel=None, *, alpha=1e-10, optimizer='fmin_l_bfgs_b', n_restarts_optimizer=0, normalize_y=False, copy_X_train=True, n_targets=None, random_state=None)[source]

Bases: Ui_Form, GaussianProcessRegressor, Modules

connectWidgets()[source]

Connect the necessary widgets.

Returns:

get_widget()[source]

This function specifies the variable that holds the styling. Use this function to get the variable

Returns:

run()[source]

Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:

setHidden(bool)[source]
set_predict_request(*, return_cov: bool | None | str = '$UNCHANGED$', return_std: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the predict method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to predict if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to predict.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

return_covstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for return_cov parameter in predict.

return_stdstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for return_std parameter in predict.

Returns

selfobject

The updated object.

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns

selfobject

The updated object.

setupUi(Form)[source]

gui.core.crossValidateMethods.cv_KRR module

class gui.core.crossValidateMethods.cv_KRR.Ui_Form(alpha=1, *, kernel='linear', gamma=None, degree=3, coef0=1, kernel_params=None)[source]

Bases: Ui_Form, KernelRidge, Modules

connectWidgets()[source]

Connect the necessary widgets.

Returns:

get_widget()[source]

This function specifies the variable that holds the styling. Use this function to get the variable

Returns:

run()[source]

Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:

setHidden(bool)[source]
set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to fit.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in fit.

Returns

selfobject

The updated object.

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns

selfobject

The updated object.

setupUi(Form)[source]

gui.core.crossValidateMethods.cv_LARS module

class gui.core.crossValidateMethods.cv_LARS.Ui_Form[source]

Bases: Ui_Form, Modules

connectWidgets()[source]

Connect the necessary widgets.

Returns:

get_widget()[source]

This function specifies the variable that holds the styling. Use this function to get the variable

Returns:

run()[source]

Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:

setHidden(bool)[source]
setupUi(Form)[source]

gui.core.crossValidateMethods.cv_Lasso module

class gui.core.crossValidateMethods.cv_Lasso.Ui_Form(alpha=1.0, *, fit_intercept=True, precompute=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cyclic')[source]

Bases: Ui_Form, Lasso, Modules

connectWidgets()[source]

Connect the necessary widgets.

Returns:

get_widget()[source]

This function specifies the variable that holds the styling. Use this function to get the variable

Returns:

run()[source]

Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:

setHidden(bool)[source]
set_fit_request(*, check_input: bool | None | str = '$UNCHANGED$', sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to fit.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

check_inputstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for check_input parameter in fit.

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in fit.

Returns

selfobject

The updated object.

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns

selfobject

The updated object.

setupUi(Form)[source]

gui.core.crossValidateMethods.cv_LassoLARS module

class gui.core.crossValidateMethods.cv_LassoLARS.Ui_Form[source]

Bases: Ui_Form, Modules

connectWidgets()[source]

Connect the necessary widgets.

Returns:

get_widget()[source]

This function specifies the variable that holds the styling. Use this function to get the variable

Returns:

run()[source]

Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:

setHidden(bool)[source]
setupUi(Form)[source]

gui.core.crossValidateMethods.cv_Local module

class gui.core.crossValidateMethods.cv_Local.Ui_Form[source]

Bases: Ui_Form, Modules

connectWidgets()[source]

Connect the necessary widgets.

Returns:

get_widget()[source]

This function specifies the variable that holds the styling. Use this function to get the variable

Returns:

run()[source]

Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:

setHidden(bool)[source]
setupUi(Form)[source]

gui.core.crossValidateMethods.cv_OLS module

class gui.core.crossValidateMethods.cv_OLS.Ui_Form(*, fit_intercept=True, copy_X=True, n_jobs=None, positive=False)[source]

Bases: Ui_Form, LinearRegression, Modules

connectWidgets()[source]

Connect the necessary widgets.

Returns:

get_widget()[source]

This function specifies the variable that holds the styling. Use this function to get the variable

Returns:

run()[source]

Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:

setHidden(bool)[source]
set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to fit.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in fit.

Returns

selfobject

The updated object.

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns

selfobject

The updated object.

setupUi(Form)[source]

gui.core.crossValidateMethods.cv_OMP module

class gui.core.crossValidateMethods.cv_OMP.Ui_Form(*, n_nonzero_coefs=None, tol=None, fit_intercept=True, normalize='deprecated', precompute='auto')[source]

Bases: Ui_Form, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV, Modules

connectWidgets()[source]

Connect the necessary widgets.

Returns:

get_widget()[source]

This function specifies the variable that holds the styling. Use this function to get the variable

Returns:

run()[source]

Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:

setHidden(bool)[source]
set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns

selfobject

The updated object.

setupUi(Form)[source]

gui.core.crossValidateMethods.cv_PLS module

class gui.core.crossValidateMethods.cv_PLS.Ui_Form(n_components=2, *, scale=True, max_iter=500, tol=1e-06, copy=True)[source]

Bases: Ui_Form, PLSRegression, Modules

connectWidgets()[source]

Connect the necessary widgets.

Returns:

get_widget()[source]

This function specifies the variable that holds the styling. Use this function to get the variable

Returns:

run()[source]

Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:

setHidden(bool)[source]
set_predict_request(*, copy: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the predict method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to predict if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to predict.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

copystr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for copy parameter in predict.

Returns

selfobject

The updated object.

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns

selfobject

The updated object.

set_transform_request(*, copy: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the transform method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to transform if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to transform.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

copystr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for copy parameter in transform.

Returns

selfobject

The updated object.

setupUi(Form)[source]

gui.core.crossValidateMethods.cv_RF module

class gui.core.crossValidateMethods.cv_RF.Ui_Form(n_estimators=100, *, criterion='squared_error', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=1.0, max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, ccp_alpha=0.0, max_samples=None)[source]

Bases: Ui_Form, RandomForestRegressor, Modules

connectWidgets()[source]

Connect the necessary widgets.

Returns:

get_widget()[source]

This function specifies the variable that holds the styling. Use this function to get the variable

Returns:

run()[source]

Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:

setHidden(bool)[source]
set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to fit.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in fit.

Returns

selfobject

The updated object.

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns

selfobject

The updated object.

setupUi(Form)[source]

gui.core.crossValidateMethods.cv_Ridge module

class gui.core.crossValidateMethods.cv_Ridge.Ui_Form(alpha=1.0, *, fit_intercept=True, copy_X=True, max_iter=None, tol=0.0001, solver='auto', positive=False, random_state=None)[source]

Bases: Ui_Form, Ridge, RidgeCV, Modules

connectWidgets()[source]

Connect the necessary widgets.

Returns:

get_widget()[source]

This function specifies the variable that holds the styling. Use this function to get the variable

Returns:

run()[source]

Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:

setHidden(bool)[source]
set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to fit.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in fit.

Returns

selfobject

The updated object.

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns

selfobject

The updated object.

setupUi(Form)[source]

gui.core.crossValidateMethods.cv_SVR module

class gui.core.crossValidateMethods.cv_SVR.Ui_Form[source]

Bases: Ui_Form, Modules

connectWidgets()[source]

Connect the necessary widgets.

Returns:

get_widget()[source]

This function specifies the variable that holds the styling. Use this function to get the variable

Returns:

run()[source]

Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:

setHidden(bool)[source]
setupUi(Form)[source]

Module contents