Source code for gui.core.crossValidateMethods.cv_BayesianRidge

from PyQt5 import QtWidgets
from sklearn.linear_model import BayesianRidge

from gui.ui.cv_BayesianRidge import Ui_Form
from gui.util.Modules import Modules


[docs] class Ui_Form(Ui_Form, BayesianRidge, Modules):
[docs] def setupUi(self, Form): super().setupUi(Form) self.checkMinAndMax() self.connectWidgets()
[docs] def get_widget(self): return self.formGroupBox
[docs] def setHidden(self, bool): self.get_widget().setHidden(bool)
[docs] def toggle_params(self, widgets, state): for w in widgets: if state: w.setHidden(True) else: w.setHidden(False)
[docs] def connectWidgets(self): self.alpha_checkbox.setChecked(True) alphawidgets = [ self.alpha_label, self.alpha_lineEdit, self.alpha1Label, self.alpha1LineEdit, self.alpha2Label, self.alpha2LineEdit, ] self.toggle_params(alphawidgets, self.alpha_checkbox.isChecked()) self.lambda_checkbox.setChecked(True) lambdawidgets = [ self.lambda_label, self.lambda_lineEdit, self.lambda1Label, self.lambda1LineEdit, self.lambda2_label, self.lambda2LineEdit, ] self.toggle_params(lambdawidgets, self.lambda_checkbox.isChecked()) self.alpha_checkbox.stateChanged.connect( lambda: self.toggle_params(alphawidgets, self.alpha_checkbox.isChecked()) ) self.lambda_checkbox.stateChanged.connect( lambda: self.toggle_params(lambdawidgets, self.lambda_checkbox.isChecked()) )
[docs] def run(self): fit_intercept_items = [ i.text() == "True" for i in self.fitIntercept_List.selectedItems() ] normalize_items = [ i.text() == "True" for i in self.normalize_List.selectedItems() ] if self.alpha_checkbox.isChecked() is True: alpha_init = [None] else: alpha_init = [float(i) for i in self.alpha_lineEdit.text().split(",")] if self.lambda_checkbox.isChecked() is True: lambda_init = [None] else: lambda_init = [float(i) for i in self.lambda_lineEdit.text().split(",")] params = { "n_iter": [int(i) for i in self.numOfIterationsLineEdit.text().split(",")], "tol": [float(i) for i in self.toleranceLineEdit.text().split(",")], "alpha_init": alpha_init, "alpha_1": [float(i) for i in self.alpha1LineEdit.text().split(",")], "alpha_2": [float(i) for i in self.alpha2LineEdit.text().split(",")], "lambda_init": lambda_init, "lambda_1": [float(i) for i in self.lambda1LineEdit.text().split(",")], "lambda_2": [float(i) for i in self.lambda2LineEdit.text().split(",")], "compute_score": [False], "fit_intercept": fit_intercept_items, "normalize": normalize_items, "copy_X": [True], "verbose": [True], } return params
if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Form = QtWidgets.QWidget() ui = Ui_Form() ui.setupUi(Form) Form.show() sys.exit(app.exec_())