libpyhat.derived.crism package

Submodules

libpyhat.derived.crism.crism_algs module

libpyhat.derived.crism.crism_algs.bd1300(data, kernel=(5, 15, 5))[source]

” NAME: BD1300 PARAMETER: 1.3 μm absorption associated with Fe2+ substitution in plagioclase FORMULATION (with kernels): 1 - ( R1320 / (a * R1080 + b * R1750) ) NOTE: Viviano-Beck et al (2014) list different wavelengths for the kernel widths (1370, 1432, 1470) than for the formulation for this parameter. We use the wavelengths listed in the formulation, as these match more closely with the wavelength in the parameter name.

RATIONALE: Plagioclase with Fe2+ substitution

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd1400(data, kernel=(5, 3, 5))[source]

NAME: BD1400 PARAMETER: 1.4 micron H2O and OH band depth FORMULATION: 1 - ( R1395 / (a * R1330 + b * R1467) ) NOTE: Viviano-Beck et al (2014) list different wavelengths for the kernel widths (1370, 1432, 1470) than for the formulation for this parameter. We use the wavelengths listed in the formulation, as these match more closely with the wavelength in the parameter name. RATIONALE: Hydrated or hydroxylated minerals

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd1435(data, kernel=(3, 1, 3))[source]

NAME: BD1435 PARAMETER: 1.435 micron band depth FORMULATION: 1 - ( R1435 / (a * R1370 + b * R1470) ) NOTE: Viviano-Beck et al (2014) list a different wavelength for one of the kernel widths (1432) than for the formulation for this parameter. We use the wavelengths listed in the formulation. RATIONALE: CO2 ice, some hydrated minerals

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd1500_2(data, kernel=(5, 11, 5))[source]

NAME: BD1500 PARAMETER: 1.5 micron H2O ice band depth FORMULATION (with kernels): 1.0 - (R1525 / (b * R1808 + a * R1367)) RATIONALE: H2O surface ice Algorithm differs from published - coded as per CAT (reduced instrument noise)

Parameters

data : PyHAT SpectralData object

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd1750_2(data, kernel=(5, 3, 5))[source]

NAME: BD1750 PARAMETER: 1.7 micron band depth FORMULATION (with kernels): 1 - ( R1750 / (a * R1690 + b * R1815) ) RATIONALE: gypsum

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd1900_2(data, kernel=(5, 5, 5))[source]

NAME: BD1900_2 PARAMETER: 1.9 micron band depth FORMULATION (with kernels): .5 * (1 - (R1930 / (a * R1850 + b * R2067))) + .5 * (1 - (R1985 / (a * R1850 + b * R2067))) RATIONALE: H2O, chemically bound or adsorbed

Algorithm differs from published - coded as per CAT (reduced instrument noise)

Parameters

wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd1900r2(data)[source]

NAME: BD1900r2 PARAMETER: 1.9 micron band depth FORMULATION:1 - ((R1908 / RC1908 + R1914 / RC1914 + R1921 / RC1921 + R1928 / RC1928 +

R1934 / RC1934 + R1941 / RC1941) / (R1862 / RC1862 + R1869 / RC1869 + R1875 / RC1875 + R2112 / RC2112 +

R2120 / RC2120 + R2126 / RC2126))

RATIONALE: H2O, chemically bound or adsorbed

Algorithm differs from published - coded as per CAT (reduced instrument noise)

data : PyHAT SpectralData object

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd2100_2(data, kernel=(3, 5, 3))[source]

NAME: BD2100 PARAMETER: 2.1 micron band depth FORMULATION (with kernels): 1 - ( R2132 / (a * R1930 + b * R2250) ) RATIONALE: monohydrated minerals

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd2165(data, kernel=(5, 3, 3))[source]

NAME: BD2165 PARAMETER: 2.165 micron Al-OH band depth FORMULATION (with kernels): 1 - ( R2165 / (a * R2120 + b * R2230) ) RATIONALE: Pyrophyllite Kaolinite group

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd2190(data, kernel=(5, 3, 3))[source]

NAME: BD2190 PARAMETER: 2.190 micron Al-OH band depth FORMULATION (with kernels): 1 - ( R2185 / (a * R2120 + b * R2250) ) RATIONALE: Beidellite Allophane Imogolite

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd2210_2(data, kernel=5)[source]

NAME: BD2210 PARAMETER: 2.21 micron band depth FORMULATION: 1 - ( R2210 / (a*R2165+b*R2250) ) RATIONALE: Al-OH minerals: monohydrated minerals

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd2230(data, kernel=(3, 3, 3))[source]

NAME: BD2230 PARAMETER: 2.23 μm band depth FORMULATION (with kernels): 1 - (R2235 / (a * R2210 + b * R2252)) RATIONALE: Hydroxylated ferric sulfates

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd2250(data, kernel=(5, 7, 3))[source]

NAME: BD2250 PARAMETER: 2.25 μm band depth FORMULATION (with kernels): 1 - (R2245 / (a * R2120 + b * R2340)) RATIONALE: 2.25 μm broad Al-OH and Si-OH band depth

Parameters

wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd2265(data, kernel=(5, 3, 5))[source]

NAME: BD2265 PARAMETER: 2.265 micron band depth FORMULATION: 1 - ( R2265 / (a*R2210+b*R2340) ) RATIONALE: Jarosite Gibbsite Acid-leached nontronite

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd2290(data, kernel=(5, 5, 5))[source]

NAME: BD2290 PARAMETER: 2.29 micron band depth FORMULATION: 1 - ( R2290 / (a*R2250+b*R2350) ) RATIONALE: Mg,Fe-OH minerals (at 2.3); also CO2 ice

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd2355(data, kernel=(5, 5, 5))[source]

NAME: BD2355 PARAMETER: 2.35 micron band depth FORMULATION: 1 - ( R2355 / (a * R2300+b * R2450) ) RATIONALE: Chlorite Prehnite Pumpellyite

Parameters

wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd2500h_2(data, kernel=(5, 5, 5))[source]

NAME: BD2500h PARAMETER: Mg Carbonate overtone band depth FORMULATION (with kernels): 1 - (R2480 / ((a * R2364) + (b * R2570))) RATIONALE: Mg carbonates

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd2600(data, kernel=(5, 5, 5))[source]

NAME: BD2600 PARAMETER: 2.6 μm H 2 O band depth FORMULATION: 1 - (R2600 / (a * R2530 + b * R2630)) RATIONALE: H 2 O vapor (accounts for spectral slope)

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd3100(data, kernel=(5, 5, 5))[source]

NAME: BD3100 PARAMETER: 3.1 micron band depth FORMULATION: 1 - ( R3120 / (a*R3000+b*R3250) ) RATIONALE: H2O ice

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd3200(data, kernel=(5, 5, 5))[source]

NAME: BD3200 PARAMETER: 3.2 micron band depth FORMULATION: 1 - ( R3320 / (a*R3250+b*R3390) ) RATIONALE: CO2 ice

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd3400_2(data, kernel=(10, 15, 10))[source]

NAME: BD3400 PARAMETER: 3.4 micron band depth FORMULATION: 1 - ( R3420 / (a*R3250+b*R3630) ) RATIONALE: carbonates; organics

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd530_2(data, kernel=(5, 5, 5))[source]

NAME: BD530_2 PARAMETER: 0.53 micron band depth FORMULATION: 1 - (R530/(a*R614+b*R440)) RATIONALE: Crystalline ferric minerals

Parameters

wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd640_2(data, kernel=(5, 5, 5))[source]

NAME: BD640 PARAMETER: 0.64 micron band depth FORMULATION (with kernels): 1 - (R624 / (a * R600 + b * R760)) RATIONALE: select ferric minerals, especially maghemite

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd860_2(data, kernel=(5, 5, 5))[source]

NAME: BD860 PARAMETER: 0.86 micron band depth FORMULATION (with kernels): 1 - (R860 / (a * R755 + b * R977)) RATIONALE: select ferric minerals (‘hematite band’)

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bd920_2(data, kernel=(5, 5, 5))[source]

NAME: BD920 PARAMETER: 0.92 micron band depth FORMULATION (with kernels): 1 - ( R920 / (a * R807 + b * R984) ) RATIONALE: select ferric minerals (‘Pseudo BDI1000 VIS’)

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.bdi1000IR(data)[source]

NAME: BDI1000IR PARAMETER: 1 micron integrated band depth; IR wavelengths FORMULATION: divide reflectances between 1020 and 1255 by linear fit from the 75th percentile R in 1330-1870 range to the median R in the range 2430-2600. Then integrate over (1 - normalized values) Note: We follow the implementation in the CAT IDL code, which differs slightly from that described in Viviano-Beck et al, 2014 RATIONALE: crystalline Fe+2 minerals; corrected for overlying aerosol induced slope

libpyhat.derived.crism.crism_algs.bdi1000VIS(data)[source]

NAME: BDI1000VIS PARAMETER: 1 micron integrated band depth; VIS wavelengths FORMULATION: Divide reflectances from R833 to R1023 by the modeled reflectance at RPEAK1, then integrate over (1 - normalized radiances) to get integrated band depth RATIONALE: crystalline Fe+2 or Fe+3 minerals

libpyhat.derived.crism.crism_algs.cindex2(data, kernel=(9, 11, 7))[source]

NAME: CINDEX PARAMETER: Inverse lever rule to detect convexity at 3.6 μm due to 3.4 μm and 3.9 μm absorptions FORMULATION (with kernels): 1 - ((a * R3450 + b * R3875) / 3610) RATIONALE: carbonates

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.crism_bd3000(data, kernel=(5, 5, 5))[source]

NAME: BD3000 PARAMETER: 3 micron band depth FORMULATION: 1 - ( R3000 / (R2530*(R2530/R2210)) ) RATIONALE: H2O, chemically bound or adsorbed

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.crism_bdi2000(data)[source]

NAME: BDI2000 PARAMETER: 2 micron integrated band depth FORMULATION: divide reflectances between 1660 and 2390 by linear fit from the 75th percentile R in 1330-1870 range to the median R in the range 2430-2600. Then integrate over (1 - normalized values) Note: We follow the implementation in the CAT IDL code, which differs slightly from that described in Viviano-Beck et al, 2014 RATIONALE: pyroxene abundance and particle size

libpyhat.derived.crism.crism_algs.d2200(data, kernel=(7, 5, 7, 7, 7))[source]

NAME: D2200 PARAMETER: 2.2 micron dropoff FORMULATION (with kernels): 1 - (((R2210 / RC2210) + (R2230 / RC2230)) / (2 * (R2165 / RC2165))) Slope for RC#### anchored at R1815 and R2430. RATIONALE: Al-OH minerals

Parameters

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.d2300(data, kernel=(5, 5, 5, 5, 3, 3, 3, 5))[source]

NAME: D2300 PARAMETER: 2.3 micron drop FORMULATION: 1 - ( (CR2290+CR2320+CR2330) / (CR2140+CR2170+CR2210) ) (CR values are observed R values divided by values fit along the slope as determined between 1.8 and 2.53 microns - essentially continuum corrected)) RATIONALE: hydrated minerals; particularly clays

Parameters

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.doub2200h(data, kernel=(5, 3, 3, 5))[source]

NAME: DOUB2200H PARAMETER: 2.16 micron Si-OH band depth and 2.21 micron H-bound Si-OH band depth (doublet) FORMULATION (with kernels): 1 - ((R2205 + R2258) / (R2172 + R2311)) RATIONALE: Opal and other Al-OH minerals

Parameters

data : PyHAT SpectralData object kernel: windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.hcp_index2(data, kernel=(7, 5, 7, 7, 7, 7, 7, 7))[source]

NAME: HCPINDEX2 PARAMETER: pyroxene index FORMULATION: RB2120 * 0.10 + RB2140 * 0.10 + RB2230 * 0.15 + RB2250 * 0.30 + RB2430 * 0.20 + RB2460 * 0.15 RB # # # # = (RC # # # #-R # # # #)/RC # # # # Slope for RC#### anchored at R1690 and R2530

RATIONALE: pyroxene is strongly +; favors high-Ca pyroxene

Parameters

data : PyHAT SpectralData object kernel: tuple contaning windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.icer1_2(data)[source]

NAME: ICER1_2 PARAMETER: 1.5 micron and 1.43 micron band ratio FORMULATION: 1 - ((1 - bd1435) / (1 - bd1500)) RATIONALE: CO2, H20 ice mixtures

Parameters

data : PyHAT SpectralData object

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.irr1(data, kernel=(5, 5))[source]

Name: IRR1 Parameter: IR ratio 1 FORMULATION (with kernels): R800 / R997 Rationale: Aphelion ice clouds (>1) versus seasonal or

Parameters

data : PyHAT SpectralData object kernel: windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.irr2(data, kernel=(5, 5))[source]

Name: IRR2 Parameter: IR ratio 2 FORMULATION (with kernels): R2530 / R2210 Rationale: Aphelion ice clouds versus seasonal or dust

Parameters

data : PyHAT SpectralData object kernel: windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.irr3(data, kernel=(7, 7))[source]

Name: IRR3 Parameter: IR ratio 3 FORMULATION (with kernels): R3500 / R3390 Rationale: Aphelion ice clouds (higher values) versus seasonal or dust

Parameters

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.islope1(data, kernel=5)[source]

NAME: ISLOPE1 PARAMETER: -1 * spectral slope1 FORMULATION: (R1815-R2530) / (2530-1815) RATIONALE: ferric coating on dark rock

Parameters

data : PyHAT SpectralData object kernel: window in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.lcp_index2(data, kernel=7)[source]

NAME: LCPINDEX2 PARAMETER: Detect broad absorption centered at 1.81 μm FORMULATION (with kernels): RB1690 * 0.20 + RB1750 * 0.20 + RB1810 * 0.30 + RB1870 * 0.30 Anchored at R1560 and R2450 RATIONALE: Pyroxene is strongly +; favors LCP

Algorithm differs from published - coded as per CAT <— What?

Parameters

data : PyHAT SpectralData object kernel: window in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.min2200(data, kernel=(5, 3, 5))[source]

NAME: MIN2200 PARAMETER: 2.16 μm Si-OH band depth and 2.21 μm H-bound Si-OH band depth (doublet) FORMULATION (with kernels): minimum( 1 - (R2165 / (a * R2120 + b * R2350)), 1 - (R2210 / (a * R2120 + b * R2350))) RATIONALE: Kaolinite group

Parameters

data : PyHAT SpectralData object kernel: windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.min2250(data, kernel=(5, 3, 5))[source]

NAME: MIN2250 PARAMETER: 2.21 μm Si-OH band depth and 2.26 μm H-bound Si-OH band depth FORMULATION (with kernels): minimum( 1 - (R2210 / (a * R2165 + b * R2350)), 1 - (R2265 / (a * R2165 + b * R2350))) RATIONALE: Opal

Parameters

data : PyHAT SpectralData object kernel: windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.min2295_2480(data, kernel=(5, 5, 5))[source]

NAME: MIN2295_2480 PARAMETER: Mg Carbonate overtone band depth and metal-OH band FORMULATION (with kernels): minimum( 1 - (R2295 / (a * R2165 + b * R2364)), 1 - (R2480 / (a * R2364 + b * R2570))) RATIONALE: Mg carbonates; both overtones must be present

Parameters

data : PyHAT SpectralData object kernel: windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.min2345_2537(data, kernel=(5, 5, 5))[source]

NAME: MIN2345_2537 PARAMETER: Ca/Fe Carbonate overtone band depth and metal-OH band FORMULATION (with kernels): minimum( 1 - (R2345 / (a * R2250 + b * R2430)), 1 - (R2537 / (a * R2430 + b * R2602))) RATIONALE: Ca/Fe carbonates; both overtones must be present

Parameters

data : PyHAT SpectralData object kernel: windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.olivine_index3(data, kernel=7)[source]

NAME: OLINDEX3 PARAMETER: olivine index with less sensitivity to illumination FORMULATION: RB1210 * 0.1 + RB1250 * 0.1 + RB1263 * 0.2 + RB1276 * 0.2 + RB1330 * 0.4

Slope for RC anchored at R1750 and R1862 RB#### = (RC#### - R####)/RC####

RATIONALE: detect broad absorption centered at 1 um

Parameters

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.r1080(data, kernel=5)[source]

Name: R1080 Parameter: 1.08 micron reflectance FORMULATION (with kernels): R1080 Rationale: FAL browse product component

Parameters

data : PyHAT SpectralData object kernel: Window in # of spectral channels around the specified central wvl

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.r1300(data, kernel=5)[source]

Name: R1300 Parameter: 1.30 micron reflectance FORMULATION (with kernels): R1300 Rationale: IRA browse product component

Parameters

data : PyHAT SpectralData object kernel: Window in # of spectral channels around the specified central wvl

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.r1330(data, kernel=5)[source]

NAME: R1330 PARAMETER: IR albedo FORMULATION: R1330 RATIONALE: IR albedo (ices > dust > unaltered mafics)

Parameters

data : PyHAT SpectralData object kernel: Window in # of spectral channels around the specified central wvl

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.r1506(data, kernel=5)[source]

Name: R1506 Parameter: 1.51 micron reflectance FORMULATION (with kernels): R1506 Rationale: TRU browse product component

Parameters

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.r2529(data, kernel=5)[source]

Name: R2529 Parameter: 2.53 micron reflectance Formulation: R2529 Rationale: TRU browse product component

Parameters

data : PyHAT SpectralData object kernel: Window in # of spectral channels around the specified central wvl

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.r3920(data, kernel=5)[source]

Name: R3920 Parameter: 3.92 micron reflectance Formulation: R3920 Rationale: IC2 browse product component

Parameters

data : PyHAT SpectralData object kernel: Window in # of spectral channels around the specified central wvl

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.r440(data, kernel=5)[source]

Name: R440 Parameter: 0.44 micron reflectance FORMULATION (with kernels): R440 Rationale: Clouds/Hazes

Parameters

data : PyHAT SpectralData object kernel: Window in # of spectral channels around the specified central wvl

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.r530(data, kernel=5)[source]

Name: R530 Parameter: 0.53 micron reflectance FORMULATION (with kernels): R530 Rationale: TRU browse product component

Parameters

data : PyHAT SpectralData object kernel: Window in # of spectral channels around the specified central wvl

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.r600(data, kernel=5)[source]

Name: R600 Parameter: 0.60 micron reflectance FORMULATION (with kernels): R600 Rationale: TRU browse product component

Parameters

data : PyHAT SpectralData object kernel: Window in # of spectral channels around the specified central wvl

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.r770(data, kernel=5)[source]

Name: R770 Parameter: 0.77micron reflectance Formulation: R770 Rationale: Higher value more dusty or icy Caveats: Sensitive to slope effects, clouds

Parameters

data : PyHAT SpectralData object kernel: Window in # of spectral channels around the specified central wvl

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.rbr(data, kernel=5)[source]

Name: RBR Parameter: Red/Blue Ratio Formulation: R770 / R440 Rationale: Higher value indicates more npFeOx Caveats: Sensitive to dust in atmosphere

Parameters

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.rpeak1(data)[source]

NAME: RPEAK1 PARAMETER: Reflectance peak 1 FORMULATION: Wavelength where first derivative = 0 of fifth-order polynomial fit to reflectances at all valid VNIR wavelengths RATIONALE: crystalline Fe+2 or Fe+3 minerals

Parameters

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.sh600_2(data, kernel=(5, 5, 3))[source]

NAME: SH600 PARAMETER: 0.60 micron shoulder height FORMULATION (with kernels): 1 - (a * R533 + b * R716) / R600 RATIONALE: select ferric minerals

Parameters

wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.sh770(data, kernel=(3, 5, 5))[source]

NAME: SH770 PARAMETER: 0.77 micron shoulder height FORMULATION (with kernels): 1 - (a * R716 + b * R860) / R775 RATIONALE: select ferric minerals

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_algs.sindex2(data, kernel=(5, 7, 3))[source]

NAME: SINDEX2 PARAMETER: Inverse lever rule to detect convexity at 2.29 μm due to 2.1 μm and 2.4 μm absorptions FORMULATION (with kernels): 1 - (a * R2120 + b * R2400) / R2290 RATIONALE: Hydrated sulfates (mono and polyhydrated sulfates) will be strongly > 0

Parameters

data : PyHAT SpectralData object kernel: Tuple of windows in # of spectral channels around the specified wvls

Returns

data: PyHAT SpectralData object with a new column added for the derived parameter

libpyhat.derived.crism.crism_funcs module

libpyhat.derived.crism.crism_funcs.bd_func1(data, wvls, kernel)[source]
libpyhat.derived.crism.crism_funcs.bd_func2(data, wvls, kernel)[source]
libpyhat.derived.crism.crism_funcs.crism_sumutil_bdicont(data, low_wvl1, high_wvl1, low_wvl2, high_wvl2)[source]
libpyhat.derived.crism.crism_funcs.min_2_bands(data, wvls1, kernel1, wvls2, kernel2)[source]
libpyhat.derived.crism.crism_funcs.rpeak1_func(data, vnir_wvls, threshold=1e-06)[source]
libpyhat.derived.crism.crism_funcs.sh_func(data, wvls, kernel)[source]

Module contents