gui.core.dimensionalityReductionMethods package
Submodules
gui.core.dimensionalityReductionMethods.dimred_FastICA module
- class gui.core.dimensionalityReductionMethods.dimred_FastICA.Ui_Form(n_components=None, *, algorithm='parallel', whiten='unit-variance', fun='logcosh', fun_args=None, max_iter=200, tol=0.0001, w_init=None, whiten_solver='svd', random_state=None)[source]
Bases:
Ui_Form
,FastICA
,Modules
- get_widget()[source]
This function specifies the variable that holds the styling. Use this function to get the variable
- Returns:
- run()[source]
Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:
- set_inverse_transform_request(*, copy: bool | None | str = '$UNCHANGED$') Ui_Form
Request metadata passed to the
inverse_transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toinverse_transform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toinverse_transform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.Parameters
- copystr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
copy
parameter ininverse_transform
.
Returns
- selfobject
The updated object.
- set_transform_request(*, copy: bool | None | str = '$UNCHANGED$') Ui_Form
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.Parameters
- copystr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
copy
parameter intransform
.
Returns
- selfobject
The updated object.
gui.core.dimensionalityReductionMethods.dimred_JADE module
- class gui.core.dimensionalityReductionMethods.dimred_JADE.Ui_Form[source]
-
- get_widget()[source]
This function specifies the variable that holds the styling. Use this function to get the variable
- Returns:
gui.core.dimensionalityReductionMethods.dimred_LDA module
- class gui.core.dimensionalityReductionMethods.dimred_LDA.Ui_Form(solver='svd', shrinkage=None, priors=None, n_components=None, store_covariance=False, tol=0.0001, covariance_estimator=None)[source]
Bases:
Ui_Form
,LinearDiscriminantAnalysis
,Modules
- get_widget()[source]
This function specifies the variable that holds the styling. Use this function to get the variable
- Returns:
- run()[source]
Each Module’s functionality will be ran in this function. You will define what will happen to the data and parameters in here :return:
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Ui_Form
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.Parameters
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
Returns
- selfobject
The updated object.
gui.core.dimensionalityReductionMethods.dimred_LFDA module
- class gui.core.dimensionalityReductionMethods.dimred_LFDA.Ui_Form(r=None, metric='plain', knn=5)[source]
-
- get_widget()[source]
This function specifies the variable that holds the styling. Use this function to get the variable
- Returns:
gui.core.dimensionalityReductionMethods.dimred_LLE module
- class gui.core.dimensionalityReductionMethods.dimred_LLE.Ui_Form(*, n_neighbors=5, n_components=2, reg=0.001, eigen_solver='auto', tol=1e-06, max_iter=100, method='standard', hessian_tol=0.0001, modified_tol=1e-12, neighbors_algorithm='auto', random_state=None, n_jobs=None)[source]
Bases:
Ui_Form
,LocallyLinearEmbedding
,Modules
- get_widget()[source]
This function specifies the variable that holds the styling. Use this function to get the variable
- Returns:
gui.core.dimensionalityReductionMethods.dimred_MNF module
- class gui.core.dimensionalityReductionMethods.dimred_MNF.Ui_Form[source]
-
- get_widget()[source]
This function specifies the variable that holds the styling. Use this function to get the variable
- Returns:
gui.core.dimensionalityReductionMethods.dimred_NNMF module
- class gui.core.dimensionalityReductionMethods.dimred_NNMF.Ui_Form(n_components=None, *, init=None, solver='cd', beta_loss='frobenius', tol=0.0001, max_iter=200, random_state=None, alpha_W=0.0, alpha_H='same', l1_ratio=0.0, verbose=0, shuffle=False)[source]
-
- get_widget()[source]
This function specifies the variable that holds the styling. Use this function to get the variable
- Returns:
gui.core.dimensionalityReductionMethods.dimred_PCA module
- class gui.core.dimensionalityReductionMethods.dimred_PCA.Ui_Form(n_components=None, *, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', n_oversamples=10, power_iteration_normalizer='auto', random_state=None)[source]
-
- get_widget()[source]
This function specifies the variable that holds the styling. Use this function to get the variable
- Returns:
gui.core.dimensionalityReductionMethods.dimred_tSNE module
- class gui.core.dimensionalityReductionMethods.dimred_tSNE.Ui_Form(n_components=2, *, perplexity=30.0, early_exaggeration=12.0, learning_rate='auto', n_iter=1000, n_iter_without_progress=300, min_grad_norm=1e-07, metric='euclidean', metric_params=None, init='pca', verbose=0, random_state=None, method='barnes_hut', angle=0.5, n_jobs=None)[source]
-
- get_widget()[source]
This function specifies the variable that holds the styling. Use this function to get the variable
- Returns: