Source code for gui.core.RegressionTrain

import numpy as np
import pandas as pd
from PyQt5 import QtWidgets

import gui.core.regressionMethods as rm
from gui.ui.RegressionTrain import Ui_Form
from gui.util import Qtickle
from gui.util.Modules import Modules
from libpyhat.regression import regression
from libpyhat.spectral_data import SpectralData


[docs] class RegressionTrain(Ui_Form, Modules):
[docs] def setupUi(self, Form): self.Form = Form super().setupUi(Form) Modules.setupUi(self, Form) self.regressionMethods()
[docs] def get_widget(self): return self.groupLayout
[docs] def make_regression_widget(self, alg, params=None): self.hideAll() # print(alg) try: self.alg[alg].setHidden(False) except: pass
[docs] def connectWidgets(self): self.algorithm_list = ['Choose an algorithm', 'PLS', 'OLS', 'OMP', 'LASSO', 'Elastic Net', 'Ridge', 'BRR', 'ARD', 'LARS', # 'LASSO LARS', - This is having issues. Hide # until we can debug 'SVR', 'GBR', 'RF' # 'GP' ] self.setComboBox(self.chooseAlgorithmComboBox, self.algorithm_list) self.setComboBox(self.chooseDataComboBox, self.datakeys) self.changeComboListVars(self.yVariableList, self.yvar_choices()) self.changeComboListVars(self.xVariableList, self.xvar_choices()) self.xvar_choices() self.chooseAlgorithmComboBox.currentIndexChanged.connect( lambda: self.make_regression_widget( self.chooseAlgorithmComboBox.currentText() ) ) self.chooseDataComboBox.currentIndexChanged.connect(self.refreshLists) self.yVariableList.currentItemChanged.connect(self.set_yRange)
[docs] def set_yRange(self): try: yvar = (self.comp_label, self.yVariableList.currentItem().text()) ymax = self.data[self.chooseDataComboBox.currentText()].df[ yvar].max() ymin = self.data[self.chooseDataComboBox.currentText()].df[ yvar].min() self.yMaxDoubleSpinBox.setValue(ymax) self.yMinDoubleSpinBox.setValue(ymin) except: print( 'Failed to update Y range. Selected data may be non-numeric!' )
[docs] def refreshLists(self): self.changeComboListVars(self.yVariableList, self.yvar_choices()) self.changeComboListVars(self.xVariableList, self.xvar_choices())
[docs] def getGuiParams(self): """ Overriding Modules' getGuiParams, because I'll need to do a list of lists in order to obtain the regressionMethods' parameters """ self.qt = Qtickle.Qtickle(self) s = [] s.append(self.qt.guiSave()) for items in self.alg: s.append(self.alg[items].getGuiParams()) return s
[docs] def setGuiParams(self, dict): """ Overriding Modules' setGuiParams as we are using a list of lists to :param dict: :return: """ self.qt = Qtickle.Qtickle(self) self.qt.guiRestore(dict[0]) keys = list(self.alg.keys()) for i in range(len(dict)): self.alg[keys[i - 1]].setGuiParams(dict[i])
[docs] def selectiveSetGuiParams(self, dict): """ Override Modules' selective Restore function Setup Qtickle selectively restore the UI, the data to do that will be in the 0th element of the dictionary We will then iterate through the rest of the dictionary Will now restore the parameters for the algorithms in the list, Each of the algs have their own selectiveSetGuiParams :param dict: :return: """ self.qt = Qtickle.Qtickle(self) self.qt.selectiveGuiRestore(dict[0]) keys = list(self.alg.keys()) for i in range(len(dict)): self.alg[keys[i - 1]].selectiveSetGuiParams(dict[i])
[docs] def run(self): if 'Model Coefficients' in self.datakeys: pass else: Modules.data_count += 1 self.list_amend( self.datakeys, Modules.data_count, 'Model Coefficients' ) if 'Model Means' in self.datakeys: pass else: Modules.data_count += 1 self.list_amend( self.datakeys, Modules.data_count, 'Model Means' ) Modules.model_count += 1 self.count = Modules.model_count method = self.chooseAlgorithmComboBox.currentText() datakey = self.chooseDataComboBox.currentText() self.comp_label = self.data[datakey].comp_label xvars = [str(x.text()) for x in self.xVariableList.selectedItems()] yvars = [(self.comp_label, str(y.text())) for y in self.yVariableList.selectedItems()] yrange = [self.yMinDoubleSpinBox.value(), self.yMaxDoubleSpinBox.value()] params, modelkey = self.alg[ self.chooseAlgorithmComboBox.currentText()].run() modelkey = "{} - {} - ({}, {}) {}".format( method, yvars[0][-1], yrange[0], yrange[1], modelkey ) self.list_amend(self.modelkeys, self.count, modelkey) self.models[modelkey] = regression.regression( [method], [params] ) x = self.data[datakey].df[xvars] y = self.data[datakey].df[yvars] x = np.array(x) y = np.array(y) ymask = np.squeeze((y > yrange[0]) & (y < yrange[1])) y = y[ymask] x = x[ymask, :] self.models[modelkey].fit(x, y) self.model_xvars[modelkey] = xvars self.model_yvars[modelkey] = yvars try: coef = np.squeeze(self.models[modelkey].model.coef_) coef = pd.DataFrame(coef) coef.index = pd.MultiIndex.from_tuples( self.data[datakey].df[xvars].columns.values ) coef = coef.T coef[('meta', 'Model')] = modelkey try: coef[('meta', 'Intercept')] = self.models[ modelkey].model.intercept_ except: pass try: self.data['Model Coefficients'] = SpectralData( pd.concat([self.data['Model Coefficients'].df, coef]), name='Model Coefficients', spect_label=xvars ) except: self.data['Model Coefficients'] = SpectralData( coef, name='Model ' 'Coefficients', spect_label=xvars ) # track the x mean from the model too model_mean = np.squeeze(self.models[modelkey].model.x_mean_) model_mean = pd.DataFrame(model_mean) model_mean.index = pd.MultiIndex.from_tuples( self.data[datakey].df[xvars].columns.values ) model_mean = model_mean.T model_mean[('meta', 'Model')] = modelkey model_mean[('meta', 'ymean')] = self.models[modelkey].model.y_mean_ try: self.data['Model Means'] = SpectralData( pd.concat([self.data['Model Means'].df, model_mean]), name='Model Means' ) except: self.data['Model Means'] = SpectralData( model_mean, name='Model Means' ) except: pass
[docs] def yvar_choices(self): try: yvarchoices = self.data[self.chooseDataComboBox.currentText()].df[ self.comp_label].columns.values yvarchoices = [i for i in yvarchoices if 'Unnamed' not in i] # remove unnamed columns # from choices except: yvarchoices = ['No composition columns!'] return yvarchoices
[docs] def xvar_choices(self): try: xvarchoices = \ self.data[ self.chooseDataComboBox.currentText()].df.columns.levels[ 0].values xvarchoices = [i for i in xvarchoices if 'Unnamed' not in i] # remove unnamed columns # from choices except: xvarchoices = ['No valid choices!'] return xvarchoices
[docs] def hideAll(self): for a in self.alg: self.alg[a].setHidden(True)
[docs] def regressionMethods(self): self.alg = { 'ARD': rm.ARD.Ui_Form(), 'BRR': rm.BayesianRidge.Ui_Form(), 'Elastic Net': rm.ElasticNet.Ui_Form(), # 'GP': rm.GP.Ui_Form(), # 'KRR': rm.KRR.Ui_Form(), 'LARS': rm.LARS.Ui_Form(), 'LASSO': rm.Lasso.Ui_Form(), # 'LASSO LARS': rm.LassoLARS.Ui_Form(), 'OLS': rm.OLS.Ui_Form(), 'OMP': rm.OMP.Ui_Form(), 'PLS': rm.PLS.Ui_Form(), 'Ridge': rm.Ridge.Ui_Form(), 'SVR': rm.SVR.Ui_Form(), 'GBR': rm.GBR.Ui_Form(), 'RF': rm.RF.Ui_Form() } for item in self.alg: self.alg[item].setupUi(self.Form) self.algorithmLayout.addWidget(self.alg[item].get_widget()) self.alg[item].setHidden(True)
if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Form = QtWidgets.QWidget() ui = RegressionTrain() ui.setupUi(Form) Form.show() sys.exit(app.exec_())